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Abstract—The film heat transfer coefficient and thermal conductivity of solid particles in a packed bed can be

determined from the moments of a response curve obtained by introducing a temperature pulse. The moment

expressions are directly obtained from the Laplace transform of fluid temperature. The method and procedure
to evaluate these two heat transport properties are described.
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s step input
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1. INTRODUCTION

THE FILM heat transfer coefficient in a packed bed has
been studied extensively, and Balakrishnam and Pei
[1] have made a critical review of the previous
investigations. The experimental work on this subject
may be classified into two categories, namely, steady
and unsteady-state methods. In one of the steady-state
studies [2], the packed bed was heated by microwave to
eliminate temperature gradient and particle-to-particle
conduction, and the film heat transfer coefficient is
determined by measuring the inlet and outlet
temperatures of the fluid. Heat can also be generated in
the pellets by means of a high frequency induction coil
[3], infrared lamp [4] or electric heater [S]. Kunii and
Smith [6] used a packed bed apparatus with two plates
of different but constant temperatures at each end of
the packed bed. Among numerous studies using the
steady-state method, only Balakrishnam and Pei [2]
eliminated the effect of particle-to-particle conduction,
and obtained the most accurate heat transfer coeflicient
consequently. However, they used a very elegant
experimental apparatus including a microwave
generator which can not be set up easily in most
laboratories.

Theinput-response technique was usually employed
in the unsteady-state methods. The input signals include
pulse [71, step [8], sinusoidal [9], cyclic variation [10,
11]. In the excellent study by Wakao [7], the heat
transfer coefficient is evaluated by an optimization
search method which minimizes the sum of the squares
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of the differences between the experimental and
calculated temperatures of exit fluid. Because the heat
transfer coeflicient is contained in one of the boundary
conditions of the energy balance equation,itmaynot be
expressed explicitly in terms of the exit temperature and
operating condition. Therefore, the computation is
relatively tedious and time consuming.

Usually the thermal conductivity of the material of
solid particles is taken as the thermal conductivity of
solid particles. In case that value is not suitable (e.g. for
porous materials) or is not available, the thermal
conductivity can be evaluated by the methods
suggested by Butt [12], Masamune and Smith [13],
and Woodside and Messmer [14].

The method of moments has been applied for

measuring adsorption rate constant [15], surface .
diffusivity [16], and effective diffusivity [17] in catalyst

pellets and diffusivity in a single catalyst bed [18, 19]
and for evaluating kinetic parameters in fixed bed [20],
slurry [21] and trickle-bed reactors [22-24]. This
method provides a simple way of analyzing a system or
evaluating some parameters without expressing the
concentration in terms of space and time. The
expressions of moments can be derived from the
Laplace transform of concentration. In this work, the
method of moment analysis is employed to obtain the
moment expressions for the response curve from a
packed bed to which a temperature signalisintroduced.
Energy balance equations are written for this unsteady-
state system and are transformed to ordinary
differential equations by applying the Laplace
transformation. After these differential equations are
solved to obtain the fluid temperature in the Laplace
domain, the moment expressions are directly obtained
by differentiating the Laplace transform of fluid
temperature and setting the Laplace variable to zero.

2. MODEL FOR HEAT TRANSFER
IN A PACKED BED

For the purpose of evaluating the film heat transfer
coefficient and thermal conductivity of solid particles,
let us consider a steady-state adiabatic packed bed
through which a fluid of constant temperature passes at
a constant flow rate. When a pulse of fluid of different
temperature (temperature pulse) is introduced at the
entrance of the packed bed, this temperature wave will
be attenuated along the axial direction. Due to the
effects of dispersion, heat transfer across the fiuid film
on the solid particles and conduction within the
particles, the temperature wave will be retained in the
bed longer than the mean residence time of fluid, and its
shape will be distorted. By using the plug flow model
and assuming constant thermal propertics, we can
write the following energy conservation equation for
the packed bed:

T U oT  3(1—¢) Kk,
at 0z ery  (pC)
aT, 2k, 0T,
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An energy balance for solid particles gives

0T, kK, [¥T, 20T,
. 2 %), 2
a (pc,,),,(ar2 T @

Because the wall of the bed will absorb and release
part of the energy, we should also consider the heat
transfer in the wall. Due to the fact that the wall
thickness is usually far less than the diameter of the bed,
we can consider the wall as a flat plate of thickness y,
(Fig. 1). Thus the energy balance gives

oT, k. T,
ot (pCp), ¥

@)

These three partial differential equations are
accompanied by the following initial and boundary
conditions:
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It is convenient to write the above equations and the
corresponding initial and boundary conditions in
dimensionless forms
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F1G. 1. Schematic diagram of a packed bed.
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The Laplace transforms of equations (8)-(10) and
juations (12)—-(14) with respect to 7 are

_ d0 EH, d0, E*H . d0, .
U'_d_c—?;_ Qe 02 ey O
dxa, 2dd,
2y _ S 257
s®20, FEz +f @ (16)
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rri 0, at £ =0, )
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E:Bz(g g), até=1,
da,
—w =, at l,b =0,
(20)
gﬁ_ Bi(0-0,), aty =1.
dl// = w wh a
1¢ solutions of equations (16) and (17) are
= Bil sinh (£@,5'/?)
+ [ED,s'2 cosh(®,s'7?)
+&Bi—1) sinh (@s'/2)] (21)
d
= Bi, 0 cosh (i ®,s'/?)
=+ [®,s5'? sinh (D, s'?) + Bi, cosh(d,s%)]. (22)
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From these two expressions, it is easy to show that

do,
e - = B(s)0 23
& oo, (s) (23)
and

da

— = B*(s)0 24
where
B(s) = Bi[®,s'/? cosh(®,s'/?)—sinh (®,s'/2)]

+[@,s"2 cosh (D,s"?)+(Bi— 1) sinh (®,s'/)]

and
B*(s) = Bi,@,s''? sinh(®,s'1?)

+ [®,sY? sinh (D,s'7?) + Bi,, cosh(®,s'*)]. (25)

The substitution of equations (23) and (24) into
equation (15) and the use of boundary condition (18)
gives

EH
0= exp{—l:s+ 2"[ B(s)+
(I)P

E*H
o B*(s)]c}. (26)

3. EXPRESSIONS FOR MOMENTS

The moments of dimensionless temperature at the
exit of a packed bed are related to the exit temperature
in the Laplace domain by

m, =(— l)" 1) (27
where the moments are defined as
m, = I : "0(z, 1) dz. (28)
The absolute moments are
= (29

mg

and the second central absolute moment is

gy = Jw (t—9%0(z, 1) dt (30)
m )

o]

where 7 is the mean residence time of the effluent
temperature wave and is equal to p,.

3.1. Pulse input
By substituting equation (26) into the above
equations, we can obtain

€2Y)
(32

mg =1,

#y=my = 1 +3EH (+E*H,,,

2 1
Wy = py—pd = §EHP,CD§ (0.2 + Fz)

2 2
+E*H“,¢)§v(§ + B ) (33)
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Note that the zero moment is unity. This means that
all the energy of the pulse input is carried to the exit,
because no heat is lost or generated in the adiabatic
packed bed.

3.2. Rectangular pulse input

If a rectangular temperature pulse is introduced
instead of a delta function, the boundary condition (5)
will be replaced by

T, 0<t< At
T=<{". tz= 35
{To for Ar<y  E=0 0 G9)
or in dimensionless form by
1 for 0<1< AT
= =0.
0 {0 for At<t at{ (36)

The use of this boundary condition for equation (15)
results in

0= % [1—exp(—sA1)]

exp{—[s+ Egé" B(s)+ qff“' BX(s )]c} (37
and
(mo), = Ar, (398
(1), = 1y + A1, (39)
(), = 112 ~3(A7). (40)

Note that equation (37) reduces to equation (26) when
At approaches zero.

3.3. Step input

Becausea pulseinput oftenresultsinan uncertain tail
in the response curve, and hence gives unusually large
moments,astepinput, which avoids theemphasis to the
uncertain tail, is often used. However, the response
curve of a step input, which is called a breakthrough
curve, may not be used to obtain the moments of the
response curve, because the measured moments will be
infinite. Instead, the response curve of a step input can
be applicd to evaluate the moments of the response
curve of a pulse input by using the following relation:

(T-Ty)s _d [(T—To)s]
Jw (T'_T())a dt de (Too—’n))s
0

where the subscripts § and s refer to the response curves
of pulse input and step input, and T, = T(L,t) at
t = o0. After being written as a dimensionless form
by taking T, = T,., the above equation is further

(1
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transformed to

D1, 5) = mosdy1,s) (42)
where
My = Lm 041,7)dr. 43)
Hence,
u—ﬂ—f [1-0(,0]dr,  (44)
Hy = L 12101, 0] d. 45)

It should be mentioned that y, and p, are the moments
for a pulseinput evaluated from the response curve of a
step input.

4. EVALUATION OF HEAT TRANSFER
COEFFICIENTS

Inthecase when the packed bed has alarge diameter-
to-wall thickness ratio so that the heat capacity of the
wallis relatively small, the terms containing E*H,, can
be neglected in equations (32) and (33). Thus,

Hy=my = 1+%Epr’ (46)
J158 2 1

==—0202+=). 47

EH, 9 p( +Bi> “7)

It is seen that the first moment depends only on the
value EH ; which relates to the void fraction of the bed
and the specific heat capacities of solid particles and
fluid. Since the void fraction can be easily measured, the
value of EH can be evaluated without measuring the
response curve. However, equation (46) can be applied
for checking the accuracy of the value of the first
moment calculated from the response signal.

After the value of EH is found, st is a function of &,
and Bi. It is seen that these two parametric groups
contain two heat transfer coefficients, k, and h,.
Usually, k, can be determined separately as has been
mentioned in Section 1. Thus, the value of k, can be
determined from equation (48) which is rearranged
from equation (47) after y) is calculated from the

response curve,
-1
—-02] .

If k, cannot be measured or found in advance, its
value can be determined with h, simultaneously. In
such a case, at least two experimental values of j, are
needed. These two values should be evaluated under the
restriction that /i, is kept unchanged. The best way to
have different values of i, while keeping the same value
of I, is to change the length of the packed bed.

Figure 2 shows a plot of ji5/EH ¢ vs ¢, with the Biot
number as a parameter. It is obvious that a large Bi or
O, givesalarge ;. Thisis because thata large /i, and/or
asmall k, gives a high heat transfer rate across the film.

9t

Bi=|—2_
l [ZEH‘,((D‘% (48)
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F1G. 2. Effects of Biot number and Thiele modulus of particles
on y5/EH .

Because the wall effect decreases as the ratio of wall
thickness to bed diameter decreases, the effect will be
negligible when the ratio approaches zero. Therefore,
‘we can obtain more precise values for the heat transfer
coefficients by extrapolating the curve of h~y/R and
k~yJ/R to the point of y/R = 0.

The effect of y/R on g} is illustrated in Fig. 3. This
was plotted by applying equation (34). The dimension-
less group E*H,/EH, represents y/R. The line
@, = 2(=®d, ) shows the case where the packings and
the wall of the packed bed have the same heat capacity
and same thermal conductivity. It is seen that the effect
of p/R is quite large. However, if ®,, is small (O /., is
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F1G. 3. Effect of the ratio of wall thickness to radius of packed
bed on 5.
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large) the effect of y/R is quite small and can be
neglected. The uses of metallic wall and nonmetallic
beads fall into this category. Under such a case, the wall
effectcan be neglected and the uses ofequations (44)and
(45) for evaluating h, will give reasonable results.

Alfter the values or k, and h, have been determined,
those of k,, and h,, can also be evaluated from equation
(33) by the same method for h, and k...

5. PROPOSED EXPERIMENTAL APPARATUS
AND OPERATING METHODS

In this section an experimental apparatus and its
operating method are proposed for the evaluation of
heat transfer coefficients.

Figure 4(a) shows the proposed experimental
apparatus. The packed bed is made of two coaxial
tubes. In order to minimize the heat transfer across the
tubes, the inner surface of the outer tube is polished or
silver-coated and the air in the annular space is
evacuated. A four-way valve is fitted close to the
entrance of the packed bed. At the start of the
experiment, fluid of temperature T passes continu-
ously through the packed bed via two ports of the four-
way valve, while another fluid of temperature 7, flows
throughthe other two ports to the vent. After reachinga
steady state, the fluid of temperature 7, is introduced to
the packed bed by turning the four-way valve. If the
valve is not turned back to the original position, a step
inputis obtained. Theinputisrectangularinshapeifthe
valve is turned back. When these two consecutive
turnings are within a very short time interval, the input
can be considered as a delta function.

A set-up as shown in Fig. 4(b) can also be used for the
experimental work. In this set-up, a microwave
generator is used to heat up the fluid. After the
microwave source is turned on, the fluid temperature at
the entrance of the packed bed will increase and reach
a steady value. Because the time to reach the steady

{a)

"

(v)

“ Microwave

I o

Fi1G. 4. Sketch of the proposed experimental apparatus.
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temperature can be made very short, the temperature
change at the inlet of the packed bed may be
approximated as a step change. If the microwave is not
turned off an approximate step input is obtained. If the
microwave is turned off after a period of time, an
approximately rectangular input results.

It should be pointed out that a pulse input is not
suitable for the evaluation of the heat transfer
coefficients. Thisis not only due to the uncertain tail, as
was mentioned above, but also due to the fact that it is
difficult to detect the temperature response accurately
because the input energy is relatively small.

6. CONCLUDING REMARKS

This work presents a method of moment analysis for
the evaluation of heat transfer coefficients in a packed
bed by using a plug flow model. When axial heat
transfer may not be neglected, the 1-dim. dispersion
model or 1-dim. conduction—dispersion model should
be applied. For such a case, the method and procedure
for evaluating the moment expressions and determin-
ing the transfer coefficients are the same as those shown
in this work.
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METHODE DU MOMENT POUR EVALUER LES COEFFICIENTS DE TRANSFERT
THERMIQUE DANS UN LIT FIXE

Résumé—Le coefficient de transfert thermique de film et la conductivité thermique de particules solides dans

un lit fixe peuvent étre déterminés par les moments d’une courbe de réponse obtenue en introduisant une

impulsion de température. Les expressions de moment sont directement obtenues par la transformée de

Laplace dela température du fluide. On décrit la méthode et la procédure pour évaluer ces deux propriétés de
transport thermique.

MOMENTENMETHODE FUR DIE BERECHNUNG VON
WARMEUBERGANGSKOEFFIZIENTEN IN EINEM FESTBETT

Zusammenfassung—Der Wirmeiibergangskoeffizient und die Warmeleitfahigkeit der Partikel in einem

Festbett konnen mit Hilfe der Momente der Ubergangsfunktion, die man als Antwort auf einen

Temperaturimpuls erhilt, bestimmt werden. Die Momentenausdriicke werden direkt aus der Laplace-

transformierten Fluidtemperatur erhalten. Die Methode und das Verfahren zur Bestimmung dieser beiden
TransportgréBen werden beschrieben.



Moment methed for the evaluations of heat transfer coefficients in a packed bed

METOJ MOMEHTOB [AJIs1 PACHETA KO3¢$IHUHNEHTOB TEIIJIOOEMEHA B
NJIOTHOM CJIOE

Annotatga—Kosdduumenr Tennoornaaun k mienke it KoxbEGHUMCHT Ter10MpPOBOAHOCTH TBEPABIX

MACTHL B IJOTHOM C10¢ MOTYT OBbITH OMpeNeneHbl C MOMOUMIBIO MOMEHTOB KpHBOII OTK/MKA Ha

TeMIIEPATYPHEIiT HMOYAbC. BoIpaskeHIs A1 MOMEHTA TOJYY3IOTCA HENOCPEACTBEHHO 13 TPeodpa3oBanus

Jlannaca ans Temnepatypht #uaxocTi. OnHCHIBAETCS METOR H Crocold pacueTa ABYX YyKa3aHHBIX
XapaKTepHCTHK NEPEHOCA TEMa.
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